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ABSTRACT
We consider the three-dimensional motion of a viscoelastic liquid
occupying all space. The constitutive law is assumed to be of the form
suggested by Kaye [13) and Bernstein, Kearsley and Zapas [2]. An existence
and uniqueness result for solutions of the initial value problem on
sufficiently short time intervals is proved using Kato's theory of quasi-

linear hyperbolic equations.
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SIGNIFICANCE AND EXPLANATION

\
&
The existence theory for models of viscoelastic fluids has so far not
been very well developed, in particular in three dimensional situations.
e Zulece

Here,‘uc'proveaan exigtence theorem for a particular class of models,

suggested by Kaye and Bernstein, Kearsley and Zapas. This theory is based on

a postulated analogy with hyperelasticity. It is assumed that the fluid

occupies all of space. Abstract methods developed originally for quasilinear

hyperbolic systems can be used to prove the well-posedness of the initial

value problem. (/1'1-_.
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A LOCAL EXISTENCE AND UNIQUENESS THEORM
FPOR A K=-BKZ-FLUID

Michael Renardy

1. Introduction

The purpose of this paper is to show the well-posedness of the initial history value
problem for a class of viscoelastic materials with memory. The constitutive law is assume
to be of the form proposed by Kaye [13] and Bernstein, Kearsley and Zapas {2). Their
theory is motivated by a formal analogy with classical hyperelasticity (21]. The
equilibrium configuration is replaced by a configuration previously occupied by the
material. It is assumed that the stress contributions from all the previous configurations
superpose in an additive fashion, leading mathematically to a convolution integral.

We consider a material occupying all of la, which is assumed incompressible. By

L= (t',(z,:a) we denote body coordinates, while y(g,t) = (y’.yz.ya) denotes the

position of material points in space. The equation of motion is given by

i
py‘l = Ls (21; "!‘l] + gi(s,t)
14 3
(1.1)
2yt
det (L) =1 .
ag3

Here X denotes the convected stress tensor, and the g‘i'

i

are the components of the body
force (we could allow g~ to depend on y, but omit this for simplicity). The Einstein
convention is used throughout this paper.

We also need the following notations:

1 4 r
3 dy 19 i
1=y, = (), Iy, =8
ij st ag? . " %k

1,5t - ey 0y g,

Sponsored by the Unjited States Army under Contract No. DAAG29-80-C-0041. This material is
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1,(g,6,1) = er(y (G(E,T) .

The X-BKZ constitutive model is described in terms of a function W, which ls the analogue
of the strain energy in classical hyperelasticity. W is a real-valued function of the two

arguments I1 and Iz. The constitutive law of K-BKZ is

3
2% - _pyrs + If. alt-1) (5¥_ . rs(r)
1
(1.2)
-4 rp qs
By T g YT enar

Here p denotes the undetermined pressure. The kernel a is positive and monotone
decreasing. We also assume that W and a are smooth functions and that a decays
sufficiently fast (e.g., exponentially) at infinity. In particular, we do not admit that

a is singular at 0. Such singularities, however, are physically possible and are in fact
predicted by some molecular theories, e.g. [(5]). Thus the requirement that a is smooth
must be regarded as a restriction on the material.

The K-BKZ theory includes various models suggested in the literature - some of them
based on molecular theories - as special cases (3], (5], (7], (15-17), [22], (23). A
crucial hypothesis needed for well-posedness of the initial value problem is that the
equation of motion is "hyperbolic", or, equivalently, that the corresponding quasi-static
equation is "elliptic”. This requirement leads to an inequality involving first and second
derivatives of W. In chapter 2, we give a sufficient condition for ellipticity. We show
that ellipticity holds if W is monotone in each argument and is a convex function of
/;: and /;;. These conditions imply in particular that, in simple shear flow, N, is
positive, N, is negative and |N1l > |N2|. These consequences are consistent with
experimental results on polymer melts and solutions.

Our well-posedness theorem is based on Kato's theory of quasilinear hyperbolic systems

{8}, [10-12]). The case of classical hyperelasticity is considered in {(8], and, to some

extent, our arguments will be analogous. However, the history dependence and




incompressibility conditions lntroduce complicating features. As a result, Kato's
assumptions cannot be verified immediately, using the equations as they stand, but only
after going through some transformations and substitutions.

We shall not consider (1.1) itself, but its second time~derivative. Egquation (1.1)

and its first time derivative are then used to express y and '! in terms of i and

y_ . This elimination is discussed in chapter 3. Because of ellipticity, there is a gain

of reqularity associated with it. Roughly speaking, this serves to improve the smoothness J

of the “coefficients™ in a quasilinear formulation of the problem. |
In chapter 4, we finally pose the evolution problem in a form accessible to Kato's

method. The delay equation is reformulated as an abstract evolution problem on a history

space. In contrast with some previous approaches to similar problems, however, this

history space only involves the history back to the initial time t = 0 rather than all

the way back to t = ==, In the previous literature, existence theorems for "hyperbolic"

models of viscoelastic fluids mostly concern linearized [9], [20] or nonlinear, but one-

dimensional problems (4], (18]. The present problem has been studlied by Kim [14] in the

special case W = I,. Kim's method is based on artificial viscosity and differs

substantially from the approach used here.




2. A gufficient condition for ellipticity
i

For abbreviation, let I be defined by ?; - 31;, and let E(t,1) = HE) T() =
(14

ay(t) T o] -
Then 1,-u(g E), and Iz-tr(g L ), so that W is a function of E. The

3y(r)’
right hand side of (1.1) can be rewritten as follows

i s
_L(?l;'rl)._.a.ﬁ_gg_+%f§..(t-f) .

a® 3 ac® ay!
2 a'w o 2% ag® a3y
apiapi ac9ag® ayt (1) ayP(r)  ag?
q .
2y g,
ig® Wi WP
Let ;f = léil). denote the entries of ;-1. The right hand side of (2.1) remains
Iy (L)
32 32
unchanged if 1‘! 3 is replaced by -—!_j + l!?i;;. The additional term vanishes as a
arpart 3!:,3!r

result of the incompressibility condition. In the subsequent chapters, we shall assume
that the following strong ellipticity condition is satisfied:

(E). If K > 0 is chosen large enough, then

2
(22 e @ FERRA > cn’u?, e o
artar p
P Tr
In terms of the original arguments of W, I, and I,, this condition has a rather
indirect form. However, we have the following sufficient criterion, which is easily

expressed in terms of I, and 1.

lemma 2.1:

If W is monotone in each argument, strictly monotone in I, or I, and a convex
function of /T; and /I—Z, then (E) holds.
Proof:

We have
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The first term leads to

2
2 PEREER
o)

— F .
12 (3/12)2 i vy
1
a“_ -_— o me? - ;— (p°f i)zl > O. The last three terms yield
't /1, 1

a positive contribution, if W is convex. To estimate the second term, let us put

—pi_ 3P p_ PP

F A0, rgro aP?,
w
3/12

-r
The term K;f Fj gives

We find

1

— AP XT oy y ¢ XP P PRy
T, pr pr

0 P _Pr 1 ~p ™ 4]
+ A - —
A o b IZA W o uur)

L edp@ew + BP@ew - = Gep? .
/xz 2

~ 2
a a contribution XKe¢(Aeu) . Since I2 = tr a, we have

ﬁlz(ﬂ'g'!) - %‘ (X'g'g)z > 0, and the whole term can be made positive by chosing K
2 .

large enough. This proves the lemma.

!
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1 3. Solution of a nonlinear elliptic Volterra eguation

Throughout the remainder of the paper, it is assumed that (E) holds with a suitable

2
constant K € R. For abbreviation, we write AP . 3w + K ;P . Thus APt depends on
13 yplyd 17y 1
pr

the gradients of y(t) and y(t), and it ls symsetric in (i,p) and (j,r). Equation
(1.1) is rewritten in the following eguivalent form

nl eyt -yt - gl - gl -

]
- gLa_L+—1-It .(t-T)Apr - _3_
a‘l ay.I. 2 -m i3 Rl

(3.1)
ayd 3¢9 3 i1
[ p lar - Ay ~ )
acd ay"(r) P

gyt
0= det (&) -1 ,
3:’

It is convenlent to split the history occurring in the integral into a known and an unknown
part. Let the initial time be t = 0. Then y(t1), T € 0 is considered known, and we
shall denote it by xo(r). On the interval [0,t], we perform a rescaling:

y(o) = y(ot), so that o ranges from 0 to 1. Equation (3.1) can be rewritten as an

equation for y as follows:

- * ]
rio) = - '3'2'(%2' -:.“)-E— + % ff_ alot-1)
114 9y (o)

o3 q s
R _3_.. (lo) 38T AL, ..

pr °
AT (yl(o),y
O afn afin l

i3

o q° pr o . . o
(3.2) +3t [o a(ot-o't)nij(y(o).y(a')) " !

. q s -
(Bto) -:%'L— =L e -l - ¢
a:‘ ay (o') ay’(a')
3yt
0 = gee({ely -
agt

-7~
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The tera involving the unknown part of the higtory (from 0 to t) is now multiplied by a

factor of t, Hence it can be treated as a perturbation for t small enough. If we set
t = 0, then the right hand side of (3.2) acts polntwise with respect to ¢ and, for each
oe (0,1], we have a nonlinear elliptic system for ;(o) and ;(d).

We assume that we have a solution ;(0) = y(0), ;(a) £ p(0) for t =0 given by the
initial conditions of the problem. If the linearization of the right hand side of (3.2) at
this given aclution is invertible, then the implicit function theorem can be used to show

} the existence of solutions to (3.2) for small t.

More precisely, let n be any integer > 1. We assume that the lnitial history is
such that xo(r) - § is continuous and bounded from (-=»,0] into #*2(x’) and that it
satisfies the lncompressibility condition. Let the initial values h(0) e ", y(0)eg +
Kn+2 and Up(0) e W satisfy (3,1) for t = 0. Then the constant functions i(O) £ n(0)
etc. satisfy (3.2) for t = 0. Condition (E) guarantees that the linearization of the

right hand side of (3.2) {(for t = 0) is an elliptic system in the sense of Agmon, Douglis

and Nirenberg [1], [6], moreover, it is invertible if ) > 0 lis chosen large enough. The

exlstence of a weak solution is established by variational methods using Girding's
inequality. Reqularity can then be obtained using the standard trick of estimating
difference quotients. According to the implicit function theorem, equation (3.2) can be
solved uniquely for ; e c(l{o,1}; g + Hn#z), V; e cl10,1); H') as functions of

heci(o,),; Hn), provided t is small enough. For technical reasons, we shall have to

use a different topology for the O-dependence in chapter 4, but a similar argument will
apply also with that topology.

By applying t! Jame procedure to the time differentiated version of (1.1), we can '
resolve for ; and ; as functions of é, i and ;.

0 2
Remark: The reader should be careful to distinguish between y and y. We have

* . - L .
y(o) = y(ot), but y(o) = at xlot) = oy(ot).

~g8= .




4. The hyperbelic Cauchy problem

. . A e A e . .
We use the abbreviations: u =y, v=y - o (y = %Q)rwe= y - o Lra=p, ¢ =p,
where A is as in the previous chapter. The second time derivative of equation (1.1) can
then be written as follows:

.
v =

1€

. -3
owl = - 2020, 205, ate-nl? 2
3® ay a®
(4.1)

j q 8 .
(2—"—- ‘.aj__ ‘L}df + "';‘l'
7 ay" (1) ayP ()

+ o*{y,u,v,p,q}

91;-3-;';"{1:2'!} .

9z’ dy
Here § is an expression involving spatial derivatives of y and u up to the second
order, and spatial derivatives of v. p and q up to the first order. Y depends on
first spatial derivatives of y, u and yv. Thus the § - and ¥ - terms represent
perturbations of lower differential order than the other terms in the equation. Of course,
we think of y, u, p and q as being expressed in terms of v and w as described in
section 3.

In order to represent (4.1) as an evolution problem, we have to eliminate the variable
¢. As in Navier-Stokes theory, this is done by using the Hodge projection. The difference
is that, since we work in Lagrangian coordinates, the Hodge projection is a function of the
displacement y. Let y e g + Hn+1 (n > 2) be such that its gradient satisflies the
incompressibility condition. We define an orthogonal projection Ply) in L2(-3) to be

i.3

2 3 3z
such that its range consists of all vectorfields u €L which satisfy o - =0,

acj ayl

8
while its nullapace contains all vectorfields of the form QSI 23—, where Yq @ L2. In
dy” 3¢

other words, P(y) 1ls the image of the Hodge projection under the coordinate transforma-

tion y + . The projection P(y) is continuous from #  into itself for jJ<n andit

-9




j +1
can be shown (19] that P(y) - as an operator in #) - depends smoothly on yeg+ R

Obviously, ¢ is eliminated from (4.1) by applying the projection P(y). Moreover,

the incompressibility condition requires that

avt a¢® _ 3wt ag® au® act
3c® ayt  ac® ay* act oyt

This can be used to express (1 - P(y))v in terms of y and u. More precisely,
n+2 n+2 n+3
(1 - Ply))veH is a smooth function of u € H Yy eH . Similarly, by
differentiating the last equation of (4.1) with respect to time, we can express
M n . n n+1
(1 - P(y))w € H as a smooth function of u, v, w&H , y H . Thus we can insert or
omit terms involving (1 - P{y))y, (1 - P(y))w and compensate for this by other terms

involving only lower order derivatives.

We use this to write (4.1) in the following form

v=u

pé = % P(y)A P(yly + (1 - P(y))d
(4.2) o

(v - P(y))v + & {y,u,v,w,p.q}
- Ply)g .
Here A stands for
i1 e r 3 avd 3% agf
(a v’ =g [5 ate-naPl = (2= = Jar
3% 3T 3y (1) AP

and A denotes the Laplace operator. The term (1 - P(y)) (1 - P(y)}v will be
convenient later. Of course, another term compensating for it is contained in §.

We rewrite (4.2) as an evolution problem on a history space by introducing the "hat
variables” as in chapter 3: ;(o) = viot), ;(0) = w(ot). The operator A is split into
two parts:

il

= i 0 pr,’
(A e,y 00veN’ = o ¢ j alot=T)A7 (y(0),y, (1))

°3 s
Al gt ol
ac® a9 Qy;(T) ayg(r)

-10~-




> - i = _1 ° - 1] pr : > 1]
(A,(t,y,0)¥(0)) >t [ atot-o A (x(0), 30" )

2 ey 3 ag®
acs Ecq ay’(o') ayp(o')

Jdo* .

Equation (4.2) can now be written in the following form:

3 -
v(g) = owl(o)
wlo) = 0+ 1 (P(y(9)) (2, + A, IP(x(a))¥(0)

(4.3) = Py r
+ (1 ~ P(y(o))A(1 - P(y(o))Iv(o) +

é(i,;)(o) + P(i(o))é(o)} .

It will turn out that (4.3) can be put into the context «f an abstract result due to
Hughes, Kato and Marsden [8]. In the following, we quoie their assumptions and their
result.

We are concerned with an evolution problem written in the form
(4.4) o= -A(t,uw)u + £(t,u), 0C £ <T, uwl) =¢ ,
where u lies in a Banach space. Since the operator A is in applications a differential
nperator, it does not take any Banach space into itself, and we have to consider more than
one topology. We shall therefore be dealing with three Banach spaces: Y X< 2z, all
reflexive and separable with continuous and dense inclusions. (Hughes, Kato and Marsden
introduce a fourth space Z', which for our application can be taken equal to X.)

On the space 2Z, a variable norm is considered. Let N(Z) be the set of all norms
in 2 equivalent to the given one ! lz. A metric on N{2) is given by

At 1 0 1) =gnmax { sup %20 /tzl , sup Mzf /lz0 } .
e otzez V' opzez ¥ ¥

We now state the assumptions of Hughes, Kato and Marsden. All assumptions are supposed to
thold for ¢,t',...€[{0,7] for some T >0 and w,w',...€ W, where W is an open set in

Y. B, ,e+. Aare arbitrary constants. The assumptions are:

e
(N) For {(t,w) e [0,T)] x W, there is N(t,w) € N(Z) such that

d(N(t,w), § lz) < XN

AIN(E W'Y, Nit,w)) € po(je=t'] + Tww't ).

PP

4




(s) There is an isomorphism S(t,w) : Y *+ Z such that

-1 1
< 1 ] <
Is(t,w)l\,’z X,. s (t,w) z,Y X’

I1s(e’,w') - S(t,w)ly'z < u.(lt'°tl + -l ).
(A1) Alt,w) € G(zu(t w)? 1, B). This means that <=A(t,w) is a Co-generator in Z

(equipped with the norm NW(t,w)) such that

-TA(t,w) Bfl '
le N{t ,w) Ce iz Nie,w)°

(A2) S(t,w)Alt,w)s '(t,w) = A(t,w) + B(t,w), where ‘

B(t,w) e B(2z), |B(t.v)|zlz < XB-

(A3) A(t,w) € B(Y,X) with 'A(t")ly,x < AA

vy - 1 < ] ..
and IA(t,w') Alt,w) Y, X uA ww'l,
The mapping t » A{t,w) € B{Y,2Z) is continuous in norm.

(A4) There is an element y, € W such that

A(t.w)yo ey, lA(t,w)yol < Ao.

(£f1) f(t,w) €Y, lf(e,w)lY < Xf, 1f(t,w') - f(t,w)lx

< uflv'-wlx and the mapping t+ f(t,w) € Z is continuous.
Under these assumptions, the following theorem is proved.
Theorem 4.1:

Assume (N), (S), (A1) ~ (A4) and (f1) hold. Then there is p' >0 and 0 < T*' < T
such that for ¢ € Y with lo-yolY € p', equation (4.4) has a unique solution u on
[0,T'] such that u e C([{0,T']) ;W) N C‘([O,T']yX). Here p' depends on A', A;, A“ and
R := dist(yo,vxw), T' depends on all the constantes occurring in the assumptions. When ¢
varies in Y subject to the restriction lo-yol € p', the mapping ¢ *» u(t) is Lipschite
continuous in the X-norm, uniformly for t € (0,T']).

We now show how this applied to {(4.3). For this, we have to identify the space Y,

X and Z and the functions A, £, S and N.

The definition of the spaces requires that we specify a topology both for the spatial

dependence and for the o-dependence. PRoth have to be reflexive. We denote by HO,n the

space of all functions y(o) : o & (0,1] » Hn(lj,ls), which are square integrable over

0,11 (in the Bochner sense). w"" denotes the space of all functions

12~




(0,1} » Hn(.J..3)' which have a square lntegrable derivative (with respect to o).

s+l 0,n+d ntd,

Moreover, we let V" = (w1 nw ) x (H"“I\ w Our choice of spaces is
z=v), X =¥, ¢ =v"™!, uhere n > 4. The operator ~A is identified with the
underlined terms on the right hand side of (4.3), while f consists of the remaining
terms. We take S to be equal to (3 + X)n. where )X is such that this operator is
invertible. (As in chapter 3, it follows from the theory of elliptic equations that such a
A exists.)

This last cholice trivially satisfies (A2) with B = 0. Moreover, our choice of
topologles is such that all boundedness and Lipsachitz conditions are satisfied, (under
appropriate smoothness assumptions on the kernel a, the strain energy W and the data of
the problem) i.e. the conditions (S), (A3) and (f1). As in wmost applications, there is a
dense set of y, satisfying (Ad) (any yq, € V"+2 does) .

It thus remains to identify a norm N such that (A1) holds. For this, we write

0 1
A =of_ ) .
oo

The operator i has a similar form as in [8!, and the same argument as there shows that

(A1) holds in the space wa" x “0,0' if this space is equipped with the norm
aa g - - - ~ A
Wy, w)b", = (v, (=A +A)v) _ + (w,w) .
N ° Lz L2

Here Xo > 0 is chosen large enough that A+ Xo is invertible. We have to verify that
(A1) also holds in higher Sobolev spaces. As far as the space dependence is concerned,
this is easily achieved by using norms involving the operator S (see (10-12]). However,

the topology of 2 also involves a o0-~derivative. Note that

P

a v dw aAoa

d = dA

— —— _._.l & = .
An Myow) = A(do' do a0 ‘L9

4
Since 3% is bounded from 2z jinto w0,2 x w°'1, we can satisfy (A1) by choosing the same

norm for the o-derivative. The perturbation given by %% will not disturd the resolvent

estimate required for the Cop-semigroup property.

N R ——
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